How Aperture Controls Sun Stars—and Exposure and DOF

(Note: This post incorporates several important fundamentals along with the discussion of controlling sun stars. As always, it’s all summarized in the Takeaways at the end.)

A previous post illustrated how the number of aperture blades affected the number of rays produced in a sun star. As discussed, sun stars are created from bright spots of light in an image when the lens aperture is stopped down. While prominent sun stars might be desirable for landscape or creative photographs, they are usually unwanted in forensic photos. In fact, there have been instances where photographs with distinctive sun stars have been limited or disallowed. Here’s how to control—or even eliminate—their prominence.

There were three small, distinct bright light sources in the following night scene. A series of images was made at every whole aperture from f/16 through f/2. (As a reminder, there are six stops up from f/16: f/11, f/8, f/5.6, f/4, f/2.8, f/2.) Only four of the seven total images—each two stops apart—will be shown below. The other three intermittent images fit in the progression as you’d expect from what you’ll see below.

This first image was made with the aperture stopped down to f/16. As expected, the sun star rays were most distinct at this aperture. [Click on image to enlarge, then click on back arrow to return to this post.]

Sun Stars at f/16 made with Nikon Z 8 with Nikkor Z 50 mm f/1.2 S lens at f/16, 2.5 sec, ISO 64.

Opening up two stops to f/8 noticeably reduced the sun star effect. [Click on image to enlarge, then click on back arrow to return to this post.]

Sun Stars at f/8 made with Nikon Z 8 with Nikkor Z 50 mm f/1.2 S lens at f/8, 0.6 sec, ISO 64.

Opening up two more stops to f/4 almost completely eliminated the sun star effect. This should be acceptable for any foreseeable use. [Click on image to enlarge, then click on back arrow to return to this post.]

Sun Stars at f/4 made with Nikon Z 8 with Nikkor Z 50 mm f/1.2 S lens at f/4, 1/6 sec, ISO 64.

Finally, opening up yet two more stops to f/2 eliminated any trace of sun star rays. [Click on image to enlarge, then click on back arrow to return to this post.]

Sun Stars at f/2 made with Nikon Z 8 with Nikkor Z 50 mm f/1.2 S lens at f/2, 1/25 sec, ISO 64.

As you can see, the wider open the aperture (which means the lower the f-number), the less pronounced are the sun stars. But you can’t just adjust your aperture to either intensify or to eliminate sun stars. Whether it is daytime or nighttime photography, changing your aperture affects your image in two main ways: exposure and depth of field (DOF). 

Recall that the smaller the f-number, the larger the lens opening. Just like 1/2 of a pie is twice as large as a 1/4 of a pie, a lens aperture of f/2 is twice the diameter of f/4. Here’s how changing aperture changes exposure and DOF:

Exposure: Opening the lens aperture lets in more light, which brightens the exposure. To keep the overall exposure the same, you must compensate by the same number of stops by using a faster shutter speed, lowering your ISO, or using a combination of both. Since all the above images were already at my Nikon Z 8’s lowest ISO of 64, my only option was to select a correspondingly faster shutter speed every time I opened up the aperture.

This means that for this series of four images, every time I opened up the lens aperture by two stops, I had to use a shutter speed that was two stops faster. As you can see from the captions under the images, at a constant ISO 64, the f/16 image required a 2.5 second exposure. Opening the aperture two stops to f/8 required a shutter speed of 0.6 seconds, which is two stops faster. Likewise, f/4 required 1/6 second and f/2 needed 1/25 second to keep the same overall exposure. Each were two stop increments of aperture and shutter speed.

As a side note, since the camera remained on a tripod throughout all the photographs, the shutter speed had no effect on the sharpness of the images. But changing shutter speeds will definitely affect the appearance of any moving elements in the image frame.

Depth of Field (DOF): DOF is how much of the scene—from near to far—is in acceptable focus for a given focus point. DOF is controlled by aperture. The more open the aperture, the less DOF. Conversely, stopping down the lens aperture increases DOF.

A deeper DOF is more critical in daytime photographs where almost everything is visible and, in most forensic photography, should be acceptably sharp. At night, a more shallow DOF can be perfectly acceptable, especially if the background and foreground are mostly black, as in the photos above.

As you can see on the enlargements by clicking on the photos above, f/4 would likely produce acceptable DOF. Depending on your case, even f/2 (or an aperture between f/2 and f/4) might give you all the DOF you need. As the photographer, you need to (and you get to!) decide on the tradeoff between DOF and sun star prominence.

Takeaways:

-1- You can control the prominence of sun stars from small, bright light sources (day or night)  by your choice of aperture. The more stopped down your aperture, the longer and more prominent the rays. Opening up the aperture will shrink the rays until they essentially disappear at the most open apertures.

-2- Opening up or stopping down your aperture will also affect the DOF in your image. You must decide how much DOF you will need. That amount would likely be different for daylight versus night photos—even of the exact same scene.

-3- Just like with any other photography, opening up or stopping down the aperture will require that you correspondingly adjust your shutter speed, ISO, or a combination of both, to maintain the same overall exposure. Make sure your shutter speed is sufficient for your image, especially if there are moving objects in your frame. Also, setting your ISO as low as possible minimizes noise and maximizes dynamic range, both of which are even more important in night photography.

SAE C1729 Automotive Forensic Photography Class – May 2024 in Orlando!

It’s been a few years since my SAE automotive forensic photography class has been offered in the Southeast—or even in the East, for that matter! Now it will be offered May 14-16, 2024 in Orlando, FL.

Anyone working in accident reconstruction, product liability cases, vehicle testing, or other forensic, evaluation, or testing investigations knows the importance of creating consistent, quality, and useful photographs. You’ll be glad to know that you can (probably) do that with the camera you already have! Just think of how much money you’ve already saved! You just need to understand and use that camera and just a few essentials such as a tripod, flash(es), and a polarizer.

In the classroom, we will learn the fundamentals of making good, consistent photographs with lots and lots of good and bad examples. We will do hands-on sessions—both indoors and out—with tripods, polarizers, night scenes, and the big one—using one or more flashes. While it will be most useful to bring your own camera gear—including flash(es) and tripod—I will bring various tripods, tripod heads, flashes, polarizers, and neutral density (ND) filters for you to evaluate during the hands-on sessions. Those will help you determine if your gear is what will serve you best, or if you need to upgrade a piece or two.

Here’s a link to the class description and registration: https://www.sae.org/learn/content/c1729/

Please contact me if you have any questions or would like more information about what to expect from the class.

Hope to see you in Orlando!

Sun Stars with Even or Odd Number Aperture Blades

Many lenses have an odd number of aperture blades, but several have an even number. For most photography, there is little to no noticeable effect.

There is, however, a noticeable difference if you have a “sun star” in your image. A “sun star” is the name given to noticeable rays—day or night—emanating from the sun or from an artificial light source.  A sun star is created when the lens is stopped down. The more the lens is stopped down, the larger the rays of the sun star.

An even number of aperture blades results in the same number of sun star rays. As the image below shows, a lens with ten blades (the TTArtisan 50 mm f/2 lens), stopped down to f/16, resulted in ten pronounced rays from a street light at night. [Click on image to enlarge, then click back arrow to return to this post.]

Made with Nikon Z 8 with TTArtisan 50 mm lens at f/16, 3.0 sec, ISO 64.

An odd number of blades results in twice the number of rays. Using the same camera as above, but switching to a lens with nine aperture blades (the Nikkor Z 50 mm f/1.2 S lens), also stopped down to f/16, resulted in eighteen sun star rays. [Click on image to enlarge, then click back arrow to return to this post.]

Made with Nikon Z 8 with Nikkor Z 50 mm f/1.2 S lens at f/16, 2.5 sec, ISO 64.

Takeaways:

-1- Day or night, “sun stars” are often created from small, bright light sources in a photograph when lenses are stopped down.

-2- An even number of lens aperture blades creates the same number of sun star rays. An odd number of blades results in double the number of rays.

-3- An even number of blades creates more pronounced rays than does an odd number of blades.

-4- Sun stars are usually undesirable in forensic photographs. A future post will describe how to control the prominence of those rays. But if you must stop down for depth of field, an odd number of lens aperture blades will create more rays, but they will be less obtrusive.

2024 Forensic Photography Symposium (FPS)

FPS 2024 Banner

From January 22 through 25, 2024, Eugene Liscio of ai2-3d Forensics (https://www.ai2-3d.com/) is hosting the third annual virtual International Forensic Photography Symposium (FPS 2024). It features an incredible variety of relevant, useful forensic photography topics from a diverse group experts in their fields.

In addition to the presentations, new this year will be several workshops in the morning sessions. Eugene asked me to conduct the first workshop on Photoshop techniques for forensic photography on Tuesday, January 23, 2024, from 10:00a to 12:00p (EST).

My workshop will include demonstrations of chromatic aberration correction, focus stacking, creating panoramas, and median stacking. We will also see how to bring out elements of the subject that are faint or may have faded over time.

We will then learn techniques for extracting additional details from your own or from supplied images from other sources. To wrap up, we will both apply these techniques to modifying images for exhibits, publications, or teaching, and see examples of improper manipulations.

Importantly, throughout the workshop, we’ll make sure that every step in every image will be preserved, can be reversed, and can be replicated by anyone else, without a single permanent, irrevocable adjustment being made.

All FPS presentations and workshops will be recorded and available to all registrants after the symposium. I’ve found this quite useful to review new, detailed, or complex ideas from presentations. This will be especially important for my workshop since we’ll be using a lot of techniques but won’t have the time to describe each one in great detail. With the videos, you’ll be able to try the techniques on your own images later.

All four days of presentations and workshops—along with the post-symposium videos—are offered for the incredibly low price of US$150 (US$75 for full time students).

Here is a link to the schedule and registration: https://www.ai2-3d.com/schedule-fps2024.

 

Focus Stacking Close-up Images

The closer you get to your subject, the less depth of field (DOF) you have. As you can imagine, when you photograph close-up or macro or micro subjects, you get progressively even less DOF.

In close-up—or closer—shots, even stopping down to your smallest aperture won’t give you enough DOF to make much of a difference. Besides, if you fully stop down your aperture, any small gain in DOF will likely be negated by diffraction, which softens the entire image.

Focus stacking blends multiple images with increasingly further focus points into a single image. This allows you to create an image with the specific DOF you want for your subject . You might not need everything in the foreground or background sharp, but you control what is or isn’t in focus by how many images (called slices) you use.

For this example, I wanted the entire broken lug stud in focus, but wasn’t concerned about the hub surrounding it. As shown below, even stopping down to f/16 didn’t give sufficient DOF to show the entire fracture surface. [Click on image to enlarge, then click on back arrow to return to this post.]

Single image at f/16 made with Nikon Z 8 with Nikon Z 50 mm MC macro lens. One Profoto B1x studio strobe on either side with Godox T365N II flash mid-left. f/16, 1/200 sec, ISO 64.

Notice how the focus quickly falls off toward the farther end of the broken lug stud fracture surface. Both the foreground and background of the hub are out of focus, but that’s okay since they’re not the subject of the photograph.

To get the entire lug stud to be in focus, I made nine separate photographs of the fracture surface with each one focused slightly further from the camera. [Click on image to enlarge, then click on back arrow to return to this post.]

Each individual image from closest focus upper left to farthest focus lower right, each made with Nikon Z 8 with Nikon Z 50 mm MC macro lens. One Profoto B1x studio strobe on either side with Godox T365N II flash mid-left. Each component image f/16, 1/200 sec, ISO 64.

In Photoshop, I brought all of the raw frames (slices) into a single image as separate layers. I aligned the layers, then stacked them using Auto-Blend Layers. As shown below, using layer masks, this function blocked the out of focus areas on each slice. Only the sharpest parts of each layer, or slice, remained. [Click on image to enlarge, then click on back arrow to return to this post.]

Screenshot of Photoshop layers with their focus stacking masks.

I cropped the image back to its original size and saved it with all its layers as a PSB Photoshop Big) file. With ten 45 megapixel layers, the file was over 2 GB, which is larger than can be saved as a PSD (Photoshop Document) file. I then flattened the image, resized it, output sharpened it, and saved it as JPEG. Note: I still always keep the PSB file with the layers and layer masks to be able to show what I did, if asked.

Below is the result of the focus stack blending of the nine layers shown above. [Click on image to enlarge, then click on back arrow to return to this post.]

Focus stacked in Photoshop from nine images, each made with Nikon Z 8 with Nikon Z 50 mm MC macro lens. One Profoto B1x studio strobe on either side with Godox T365N II flash mid-left. Each component image f/16, 1/200 sec, ISO 64.

Note how the entire face of the fracture surface is now in focus. Note: I used to also use Zerene Stacker and Helicon Focus for focus stacking—and both are excellent—but now I almost exclusively use Photoshop.

Takeaways:

-1- The closer your camera is to your subject, the less depth of field (DOF) you will have.

-2- Most forensic images require the entire subject to be in focus to show all its details.

-3- Even stopping your lens down to its minimum aperture won’t give you sufficient DOF, plus you risk losing detail from diffraction.

-4- Focus stacking requires a series of photographs (slices) be made with the focus increasingly distant from the camera. These slices are blended into a single image where only the sharpest elements of each slice will be kept by the software.

-5- Only combining images through focus stacking allows you to get sufficient DOF for many close-up, macro, and micro images.

-6- The closer the subject, the more slices (individual images) you need. For some micro images, more than 1,000 slices need to be blended through focus stacking.

-7- Focus stacking can also be used for large subjects including landscapes, buildings, accident scenes, and vehicles. Those larger subjects require fewer slices—often only two or three.

Why Full Auto Exposure Mode Creates Inaccurate Night Photographs

One kind of forensic night photography requires you to accurately capture the appearance of a scene as closely as possible under lighting conditions similar to what they were at the time of an incident. Of course that results in an overall image that appears dark since, after all, it is a night scene.

Using fully automatic exposure modes will result in the scene being significantly (and obviously) overexposed. This is because the camera is trying to record the scene as a mid-tone (frequently referred to as “middle gray” even when the subject isn’t gray). This automatic brightening of night scenes usually results in noisy, overexposed images that don’t resemble the actual scene at all.

Almost all consumer and prosumer cameras have a fully automatic exposure mode denoted by a green camera icon with or without the word “Auto”. The image below shows the full Auto mode icon on a Nikon D5600 and Canon T7i. (Professional cameras like my Nikon Z 8’s often do not have this mode.) [Click on the image to enlarge. Then click on back arrow to return to this post.]

Made with Nikon D850 and ZEISS Milvus 100 mm macro lens.

In Auto mode, the camera sets the aperture, shutter speed, and ISO, and you cannot change or override any of them! Because the photographer cannot affect exposure in any way in full Auto mode, when teaching I refer to it as the “Green Mode of Shame” to drive home the point that you as the photographer are left without any ability to control your exposure (or a number of other important settings). While this mode might work for ideal lighting during the day, it just doesn’t—and can’t—work for ambient light night photographs. (Note: Semi-automatic exposure modes Program, Aperture Priority, and Shutter Priority will be addressed in a future post.)

I made the following two images in a lighted parking lot that had a white, a black, and a silver vehicle in the scene. (Note: both images were captured in the camera’s raw NEF format.)

For this first image, I used a Nikon Z 5 in Auto mode (its Green Mode of Shame). As discussed above, the camera tried to create a mid-tone image, and I couldn’t do anything about it. [Click on the image to enlarge. Then click on back arrow to return to this post.]

Auto exposure mode with Auto ISO. Made with Nikon Z 5 with Nikkor Z 24-70 mm f/4 lens at 49 mm in raw mode. f/4, 1/50 sec, ISO 25,600.

Note the camera chose a wide open aperture to let in as much light as possible (f4 on that lens), and an ISO of 25,600(!), while setting the shutter speed to 1/50 of a second. (A shutter speed of 1/50 of a second is considered handholdable with a near 50 mm focal length. The thinking is that if someone is going to use a camera in Auto mode, the camera will most likely be handheld. Consequently, the camera will open the aperture and boost the ISO to keep the shutter speed handholdable. But as usual, I had this camera on a tripod, like I almost always do in any light. )

Even though the original image is quite noisy (the great reduction in size and the JPEG compression of this posted image reduced the appearance of noise from the original raw), that’s not the biggest issue with it. The real problem is the scene was nowhere near this bright; it didn’t look anything like this at the time I made this image.

For the image below, I switched to manual exposure mode (the only exposure mode I ever use). I kept the aperture at f/4, but then set the ISO to the camera’s minimum of 100 to minimize the image noise. Because the camera was on a tripod, I wasn’t too concerned about shutter speed as long as it stayed within reason. [Click on the image to enlarge. Then click on back arrow to return to this post.]

Manual exposure mode with ISO set at 100. Made with Nikon Z 5 with Nikkor Z 24-70 mm f/4 lens at 49 mm in raw mode. f/4, 1/3 sec, ISO 100.

With the aperture and ISO set, I adjusted the shutter speed until the image on the back of the LCD looked like what I was seeing with my naked eye. As it turns out, the Auto image was four stops lighter than this more accurate one.

Note 1: By default, I have the camera’s Picture Control set to Neutral with reduced contrast and saturation so the LCD closely matches my computer monitor.

Note 2: For an actual night photograph case, I start by tethering my camera to a laptop that is calibrated to match my desktop monitor. There’s much more to the actual process than I did for this demo, but it’s close enough to illustrate the point that you need to take manual control of the camera.

While this second image is close to showing the scene as I saw it, to view it properly, you would need to view it with a black surround in a darkened room with your monitor brightness set to 140 cd/m² to match what I see. Regardless of these technicalities, comparing the two images—in whatever light you’re in or computer you’re on—it is obvious that the upper Auto exposure image doesn’t look anything like the more accurate lower manual exposure mode image.

In a number of cases where I’ve done both the night photography and explained why photographs submitted by other experts or photographers were improper and misleading, all of those inaccurate photographs have been stricken and disallowed by the judge.

While it’s a little bit off-topic, being able to explain how and why photographs were made and why they accurately represent what they purport to show—and why other ones don’t—is critical in almost all ambient light night photography cases.

Takeaways:

-1- Fully automatic exposure modes (like Auto) are not designed to—and cannot—accurately capture ambient light night images.

-2- You need to shoot night photographs using manual exposure mode with a low ISO to minimize noise, with the appropriate aperture for the depth of field you need, and with the shutter speed set to match what the scene looks like to the naked eye. There’s much more to the whole process, but that’s the essence of it.

-3- While the lower photo looks much closer to what the parking lot looked like when I made the photographs, it was not made with the procedure I use for case work. It is close enough to make a quick demo comparison against a demonstrably incorrect Auto method that yielded a demonstrably incorrect image.

Using Two Flashes in Full Sun

This tire was photographed in the afternoon on a sunny day. [Click on the image to enlarge. Then click on back arrow to return to this post.]

Mounted tire on wheel outdoors with no flash. (Made with Nikon Z 8 and ZEISS Milvus 50 mm macro on Nikon FTZ II adapter at f/16, 1/10 sec, ISO 64.)

Despite being properly exposed, there are almost no details in the shadows of the tire sidewall or the wheel. Brightening the exposure would have shifted the brightest parts of both the wheel and tire into blown out highlights and all detail there would have been permanently lost. While not essential to the tire or wheel, the brighter spots on the concrete driveway would also have blown out. This would result in a less professional looking image.

Fortunately, the overall exposure itself can remain, and flashes can be used to bring out details in the shadows. [Click on the image to enlarge. Then click on back arrow to return to this post.]

Mounted tire on wheel outdoors with both on-camera flash and second flash at lower right. (Made with Nikon Z 8 and ZEISS Milvus 50 mm macro on Nikon FTZ II adapter. Godox TT685N II in camera hot shoe and Godox AD200 Pro at lower right at f/16, 1/10 sec, ISO 64.)

While keeping the identical exposure, a Godox TT685N II speedlight was slid into the camera’s hot shoe and aimed towards the shadows inside the wheel and on the left side of the tire sidewall. A second Godox flash—an AD200 Pro—was handheld at the lower right, and angled upwards toward the right side where the tread used to be.

These two flashes balanced the natural light and added much-needed detail in the shadows. The result was both a professional appearing image and one where details were not blocked up in dark shadows or blown out in the highlights.

Of course, like almost every photograph I make, both of these images were made with the camera on a tripod. I used a five-second self-timer so I could move over and get the handheld flash at the lower right into position.

Takeaways:

-1- On bright sunny days, there is often too much contrast to capture detail in both the highlights and the shadows.

-2- Increasing the exposure will lighten the shadows, but will cause the highlights to blow out and permanently lose all data and detail there.

-3- Adding one or more flashes to fill in shadows where needed results in more detail in the shadows without losing detail in the highlights.

-4- You may have to make a couple different images with the flashes to get the proper amount of light and the proper angle of light for what you want. When I make more than one image, I only keep the one that shows the details I intended. If you feel you must keep all the images you make, no problem. Only use the best one in reports or as an exhibit.

-5- More good news! The more often you practice with one or more flashes, the more quickly and intuitively you will be able to get both the amount and direction of light that you want.

SAE Photography Class December 5-7, 2023, in Irvine, CA

I will be teaching Photography for Accident Reconstruction, Product Liability, and Testing – C1729 in Irvine, CA, on December 5-7, 2023. Please check out this link for more information or to register:  https://www.sae.org/learn/content/c1729/.

Night photo of intersection with traffic light. (Made with ZEISS Milvus 50 mm f/2 macro lens on Nikon D850, at f/6.3, 1/60 second, ISO 1600.)

[Click on photo to enlarge, then click on back arrow to return to this post.]

In addition to the class presentations and materials, I will be bringing various tripods, tripod heads, and accessories, along with a lot of Godox flashes that we’ll use to practice multi-flash and off-camera flash techniques.

Please contact me if you have any questions about the class.

New SAE Photography Class Scheduled October 17-19, 2023!

SAE International has just added another of my photography classes (Photography for Accident Reconstruction, Product Liability, and Testing – C1729) at their excellent training center in Troy, MI, for October 17-19, 2023. Please check out this link for more information or to register:  https://www.sae.org/learn/content/c1729/.

Melted aluminum on lug stud. (Nikon D850 with ZEISS Milvus 100 mm f/2 macro lens.)

[Click on photo to enlarge, then click on back arrow to return to this post.]

In addition to the class presentations and materials, I will be bringing various tripods, tripod heads, and accessories, along with a lot of Godox flashes that we’ll use to practice multi-flash and off-camera flash techniques.

Mid-October is still a great time to be in Troy, with daytime highs about 60° and lows about 42°.  The SAE Troy facility is just off I-75 at W Big Beaver and is surrounded by hotels and restaurants, so is quite convenient.

Please contact me if you have any questions at all.

SAE Automotive Forensic Photography Class – April 2023

SAE International has scheduled my next Photography for Accident Reconstruction, Product Liability, and Testing (C1729) class at their excellent Troy, MI facility from April 4-6, 2023: https://www.sae.org/learn/content/c1729/

It’s a great facility and is quite easy to access on W Big Beaver Rd just off I-75. It’s about 45 minutes from the Detroit airport. There are plenty of hotels and a lot of great restaurants in every price range.

The link above provides a detailed course outline. We’ll also get hands-on time to practice with exposure, flash, polarizers, tripod use, and more.

If you have any questions or would like more details, please feel free to email or call.

I look forward to seeing you there!