From August 12 through 14, 2019, I will be teaching the third Photography for Accident Reconstruction, Product Liability, and Testing class for SAE. This time it will be at Southeast Toyota Technical Center in Jacksonville, FL. We’ll cover a lot of material in the three days, and you’ll come away making better quality, more professional photographs from that point on, regardless of the location or lighting conditions. After all, your photographs are at least as important as any other part of your work. You’re a professional, and your photographs should reflect that professionalism. After this class, they will.
This post shows another example image using the amazing Laowa 25 mm Ultra Macro lens. In an earlier post, I discussed what that lens is, and how to best use it. For this example, I made a 5X image of a small torn flap of rubber from a failed tire.
The green box in this first image highlights the tiny flap I wanted to make an extreme close-up photograph of.
To illuminate the flap, I used a Nikon SB-910 flash mounted on my Nikon D850 camera hot shoe to control off-camera lights. I zoomed the lens all the way out to 5X magnification (5:1 reproduction ratio) to get the greatest enlargement possible. I then moved the camera on a pair of Really Right Stuff focusing rails until I was able to fill the frame with that tiny flap. Here is the result:
That is the full size image; there was no cropping. The flap was covered with small dots of colors from the oils in the rubber compound. I felt these colored dots interfered with the subject, so I turned the image black & white.
You’ll notice that both the tip and the base of the flap are going out of focus. This is due to the inherent limited depth of field with such high magnification. It would have been easy to make everything appear to be in focus by taking a couple additional photographs at different focus points, then blending them together in focus stacking software such as Photoshop, Helicon Focus, or Zerene Stacker. But the purpose of this photo was to demonstrate the lens by itself.
Using this lens can’t be done on automatic, but if you align, focus, expose, and light properly, it’s an amazing performer at an amazingly low price.
Wow, that’s quite a name for a great, unique lens, and that name should make sense by the time you finish reading this.
This photograph is a single shot of a 0.5 mm pencil lead at 4X magnification (4:1 reproduction ratio) made with that lens on a Nikon D850. I made it in my studio lab without using flash. The lens aperture ring was at f/11. I set the ISO at 160 and the shutter speed at 2.5 seconds. It is a full-frame image. In other words, it has not been cropped. (Click on any image to enlarge, then click back arrow to return to this post.)
By definition, a macro lens captures an image at 1:1 or 1X or life size, which all mean the same thing: the subject will be the same size on your sensor as it is in real life. Since a full frame sensor (FX in Nikon world) is a 1″ x 1.5″ rectangle, the subject, or piece of the subject you’re showing, would have to be no more than 1.5″ wide or 1″ high.
Most macro lenses have a reproduction ratio of either 1:1 (life size) or 1:2 (half life size). These may also be referred to as a 1X or 1/2X magnification, respectively.
My 60 mm and 105 mm Nikon macro lenses (“Micro-NIKKOR” in Nikon-speak) both have a 1:1 reproduction ratio. My usual lenses are ZEISS Milvus 50 mm and 100 mm macro lenses (ZEISS calls them Makro-Planar) have maximum reproduction ratios of only 1:2, or half life size. While either 1:1 or 1:2 is just fine for much of the photography I do, I often need greater magnification for certain details—especially for tire or other product analysis photos.
If you have a camera with a high resolution sensor, you could crop the image to just the area you want to show. But by cropping, you will be throwing away pixels and restricting the size of the image you can print or project as a trial exhibit. That negates the benefit of a high resolution camera. It’s much better to capture the image full frame without cropping so you keep all the resolution your camera can deliver.
Now, this is not a lens that you just pop on your camera and start taking incredible macro photos with. It’s a fully manual lens that does not communicate with your camera. It also doesn’t have a focus ring. So auto exposure and autofocusing are out.
Here are some considerations to keep in mind when using this lens:
-1- You need lots of light or very long shutter speeds for any kind of macro work. And the greater the magnification, the more light you need. This can be tricky with the small working distances involved.
-2- Raising your ISO won’t often be a great option because any additional noise will destroy the fine details you’re trying to capture.
-3- With high magnification, both your subject and your camera need to be perfectly still. That often means clamping down your subject and definitely means using a good, sturdy tripod for your camera.
-4- There is no focusing ring on the Laowa lens. You focus by moving the lens closer to or further away from your subject. Handholding is completely out of the question. Even with a good tripod, it can be quite tedious. You’ll really benefit from a macro focusing rail. It works best with Live View zoomed in to 100%. You’ll also want to illuminate your subject with a flashlight while you focus.
-5- You set the aperture on the lens, then adjust the ISO and shutter speed to match your lighting. You’ll need some experimentation and practice to get your exposure correct. This will become easier with experience.
-6- While stopping down your aperture increases depth of field (DOF), it also increases diffraction, which destroys the fine details you are trying to capture. The greater the magnification, the less DOF you have at any given aperture. If you can’t get adequate DOF at a given magnification, you should consider focus stacking a series of photographs. That involves taking multiple images with varying focus points, then blending them in Photoshop, Helicon Focus, or Zerene Stacker. More on focus stacking in a later blog post.
-7- To ensure the greatest DOF in a single image, or just a few images, it is best to photograph with your camera as perpendicular to your subject as possible. The greater the angle your camera is to your subject, the shallower the DOF will appear. To keep an offset subject all in focus would require multiple shots stacked in post-processing.
Digital single-lens reflex (DSLR) cameras have either full-frame or cropped sensors. A full-frame DSLR sensor (called FX by Nikon) yields an image size approximately 24 mm x 36 mm, just like 35mm SLR film cameras did. Crop sensor cameras are usually 1.5x (DX for Nikon) or 1.6x (APS-C for Canon), but can be 1.2x or 1.3x.
If the full-frame image size is 24 mm x 36 mm, why is it called 35mm? It’s obviously not the length of either side. The diagonal is 43.3 mm, so it’s not that either. (Click on image to enlarge, then click back arrow to return.)As the photograph shows, it turns out that 35 mm refers to the width of the film strip, including the sprocket holes.
While the “35 mm” designation has no direct relevance to the digital sensor size, it is still useful when referring to the focal length of lens. The diagonal, horizontal, and vertical angles of view of a given lens are the same with a full-frame digital sensor as they are on a 35 mm film camera. For example, the ZEISS Milvus 50 mm f/2 macro lens has a horizontal angle of view of 38 degrees on a full-frame digital sensor just as it does on a 35 mm film camera. The cropped sensor equivalent values will be the subject of another post.
Even before I started teaching Accident Reconstruction, Product Liability, and Testing Photography classes, I’ve often been asked about what photo gear works the best for those areas.
In response, I’ve created two wish lists at B&H Photo Video: one for Nikon Nikon Gear Wish List and one for Canon shooters Canon Gear Wish List. I’m a Nikon shooter, so most of my direct experience is with Nikon equipment. Here are some notes on the lists:
-1- I currently use the Nikon D850. It’s arguably the best all-around camera on the market, but I recommend the Nikon D750 for Nikon shooters for several reasons:
– Its files are more manageable in size, but are still plenty large.
– It still has the manageable body size and shape, and even has the really useful flip up and down LCD screen.
– It has a built-in flash to use to trigger the Nikon 4804 R1 macro flashes.
– The built-in flash isn’t terribly powerful, and can’t be rotated or removed, but can be used in a pinch.
– Right now, it is on a fantastic sale—especially with the 24-120 mm lens. You save $1,200 instantly.
– It’s been out for a while, and is tried and true.
There are similar advantages for Canon shooters with the 6D Mk II vs. the 5D Mk IV. If you have the budget, the Nikon D850 or Canon 5D Mk IV can’t be recommended highly enough. But they are not necessary for the work we do.
-2- The lists show both the ZEISS Milvus 50 mm and either Nikon 60 mm or Canon 100 mm macro lenses. I use the ZEISS, but also have the Nikon. I use my ZEISS Milvus 50 mm lens for most of my work photography, since it has a normal perspective. I also use the ZEISS Milvus 100 mm lens when I need to fill the frame with a macro shot, but can’t get close enough.
Advantages of the ZEISS are: Precise manual focus; amazing micro contrast; and, 50 mm is accepted “normal” lens that I use for almost everything.
Disadvantages of the ZEISS are: Manual focus only (but that is my preference); and, only enlarges to 1:2 (or half life-size).
Advantages of the Nikon: 1:1 (life-size macro); autofocus (but see note below); close enough to “normal” focal length; and, less expensive.
Disadvantages of Nikon: Not as easy to manually focus. Note: When shooting macro images, you’ll most likely have to manually focus anyway, so having a more precise manual focusing ring is a real benefit.
Speaking of ZEISS lenses, four ZEISS manual focus prime lenses make up my work kit: the classic ZEISS 25 mm f/2 Distagon; the ZEISS Milvus 35 mm f/2; the ZEISS Milvus 100 mm f/2 macro; and, the aforementioned ZEISS Milvus 50 mm f/2 macro. I use the latter for 90 percent of my work. ZEISS makes lenses for Nikon, Canon, and Sony mounts. They have unrivaled sharpness and micro-contrast, and such smooth and accurate manual focusing that you’ll forget autofocus exists! Continue reading “Suggested Gear for Accident Reconstruction, Product Liability, and Testing Photography”
Even once you get your flashes dialed in to give you the exposure you want, there may be areas where you need more detail in the shadows. You can add lights, or just use a reflector. For this example, the flash lighting illuminated the tire just as I wanted, but the tread area in the foreground was too dark. (Click on image to enlarge, then click on back arrow to return.)I could have added one or more lights to illuminate the tread, but I chose to place a simpler silver reflector at an angle next to the shadowed tread. This allowed me to redirect the spill light from the flashes back into the tire’s tread.I used the silver side of a Profoto collapsible white/silver reflector to bounce light into the shadows. The beauty of a reflector is that it does not affect the overall exposure, so there was no need to re-meter to determine the proper exposure.
It is often difficult to photograph highways without traffic blocking part of your shot. But you can effectively eliminate moving vehicles from your photo by using a dark neutral density (ND) filter. Neutral density filters are neutral gray gel or glass filters that require longer shutter speeds for the same exposure with the same aperture and ISO, depending on how light or dark the filter is.
This first image was made on a mostly sunny day without any filter over the lens. The vehicles are all slightly blurred, but are still recognizable. (Click on image to enlarge, then click on back arrow to return.)
At my Nikon D850’s lowest numbered ISO of 64, I chose an aperture of f/9 on my ZEISS Otus 85 mm lens. This yielded a shutter speed of 1/125 second. If the vehicles were traveling at the 65 mph speed limit, they would have traveled 0.76 feet during that 1/125 second. That small movement explains the minimal blur of the vehicles.
To blur the vehicles by increasing the shutter speed, I screwed a 3-stop Formatt Hitech Firecrest Ultra ND filter onto the front of the lens. Keeping the f/9 aperture and ISO 64 settings with the same lens, this reduced the shutter speed to 1/13 second (which was actually 3 1/3 stops less).
At 1/13 second, vehicles at 65 mph would travel 7.3 feet. This rendered the vehicles as no longer recognizable, but they still blocked sections of the roadway.
For this final image, I replaced the 3-stop ND filter with a 10-stop Formatt Hitech Firecrest Ultra ND filter. I again kept the aperture at f/9 and the ISO at 64 while using the same ZEISS Otus 85 mm lens. This yielded a shutter speed of 2.5 seconds, which was 8 1/3 stops slower. (Note: the edge of a cloud resulted in a slightly underexposed image, so I increased the exposure by one stop in post-processing, so this final image was 9 1/3 stops less than the original without the filter.)
At the 65 mph speed limit, vehicles covered 238.3 feet in 2.5 seconds. Assuming the dashed lane lines plus spaces were at the standard 40-foot increments, the length of the roadway shown in any lane in this photo was much greater than 238.3 feet. Consequently, every vehicle in both directions crossed the image frame in a fraction of the time the shutter was open. This meant vehicles would never register, but would leave only faint blurs across the image.
Here are some factors to consider:
-1- This only works when traffic moves fast enough not to register while the shutter is open. It won’t work at all in slow or stopped traffic, since slow or no movement would allow the vehicles to register in the frame, even at longer shutter speeds.
-2- Bright sunshine complicates the problem since your shutter speed will be quite high because of bright ambient light. The amount of ND needed will depend on the ambient light levels and the speed of the traffic.
-3- Dark ND filters will likely fool your Auto White Balance (WB) like it did for the 10-stop filter. I corrected it with one click in Adobe Camera Raw. This wouldn’t have been the case had I initially set the WB to a specific value.
-4- If I had exposed the darkest for another stop (that is, 5 seconds instead of 2.5 seconds), I would not have had to brighten it by a stop in post, and there would have been even less chance of a blurred streak from passing vehicles. When in doubt, it is always better to slightly overexpose (as long as you’re not blowing out your highlights) to get the slowest shutter speed possible for the least perceptible blurred streaks.
-5- You can stack multiple ND filters to get the amount of neutral density you desire. Alternatively, variable ND filters allow you to rotate part of the filter to darken or lighten the effect of the filter.
-6- The numerical value of an ND filter is unimportant. You just need one dark enough to get your shutter speed slow enough to reduce the vehicles to imperceptible blurs. That will often be in the eight-to-ten stop range.
-7- I always work with a tripod, but even if you don’t, a tripod is absolutely necessary for the long exposure images. There is no way to handhold a camera steady for 1/13, much less 2.5, seconds.
While working so intensely together to conduct testing for publication, it is worth taking the time to make photographs of all those who participated. The photos can be useful for a report, any paper presentations, and the websites of the participants. (Click on image below to enlarge, then click on back arrow to return.)
From left to right are truck and truck ECM guru Greg Wilcoxson (Wilcoxson Consulting, LLC), truck, data acquisition, and, well, everything else guru Wes Grimes (Wes Grimes, Collision Engineering Associates), and me. In an earlier post, you’ll find a link to the papers we wrote together from this testing.
Even with my hat, I was hardly in their league. We did have fun in the evenings when I would walk into a restaurant first, and tell the hostess or host that I was their bodyguard, and needed to get them a good table. We should have recorded their reactions.
A photograph of something as long as a tractor trailer is often best presented in a panoramic format (much wider than tall). This focuses attention on the subject by eliminating excessive sky and foreground.
While may seem counterintuitive, adding fill flash even on a bright, sunny day brings out details that better document your subject, which can make your photos even more useful. In this first image, the car and measurement rod were properly exposed, but the high contrast from bright sun resulted in little detail in the deep, dark shadows. [Click on image to enlarge, then click back arrow to return.]
Adding light from a flash resulted in a more balanced image, with details now visible even in components on the frame, suspension, and under the hood. The car and measuring rod remain properly exposed. [Click on image to enlarge, then click back arrow to return.]
Determining the amount of fill flash needed will be a topic for future posts. In the meantime, it’s worth experimenting with both manual and TTL flash settings until it becomes second nature.
Especially when handholding a camera, autofocus points might land on an object closer or farther away from your intended subject. This can result in an unimportant element in sharp focus, while your subject isn’t sharp.
There are three main ways to avoid this:
-1- Use manual focus. This allows you to choose what will be sharpest in your image, even if you recompose or your camera moves, as long as you remain the same distance from your subject.
-2- Put camera on a tripod, then move your autofocusing point until it’s on your intended subject.
-3- If handholding, autofocus on your intended subject, press your focus lock button, and recompose.
Your intended subject should be in focus. For this pair of photographs, the camera was on a tripod. In this first image, the autofocus point latched onto the black cable shield in the foreground. This caused the axle and wrapped tire behind it to be soft. (Click on image to enlarge, then back arrow to return.)For this second image, the focus point was moved off the cable wrap and onto the axle and wrapped tire.Which photograph is correct? Depends on whether the subject is the black cable wrap or the tire and axle. Make sure you focus where you intend.