What’s the one thing you do on EVERY scene, vehicle, or vehicle component inspection? Photography, of course. If your photographs are accurate and of good quality, they will be important pieces of evidence in depositions or trials. After all, you can’t cut out a giant section of the highway with all the tire marks and gouges to bring into court. Nor can you bring a couple of wrecked tractor trailers up the elevator to the courtroom. But if your photos are good, you can have them entered into evidence in place of the physical evidence, and make them even more useful to the trier of facts (judge or jury) than the actual physical evidence itself would have been.
Tire marks without polarizer: (Click on image to enlarge, then click on arrow to return to this post):
Tire marks with polarizer: (Click on image to enlarge, then click on arrow to return to this post):
By good, I mean your photographs need to be consistently accurate, well focused, have good depth of field, and be well exposed and well lit with good shadow detail. And we don’t get to choose or change the lighting and weather conditions we face during our inspections. We have to adapt and still create quality, useful images.
Through SAE International, I’ll be teaching another three-day class called Photography for Accident Reconstruction, Product Liability, and Testing (SAE C1729). This class qualifies for SAE’s Accident Reconstruction Certification and for ACTAR credits.
We’ll get hands-on practice with the three most important tools (besides your camera and lens): a tripod, a polarizing filter, and one or more flashes. Flash is typically the tool most folks are afraid of, but you’ll learn the difference between full and fill flash, and how straight forward flash really is. We’ll even practice with two flashes, which let you capture details you can’t otherwise get.
You’ll receive a ton of information, and be able to apply what you’ve learned and practiced during your very next inspection and onward for the rest of your career.
If you’d like (need?) to make better automotive forensic photographs, please join me September 17 through 19, 2024, at the Anaheim Hills Business Center in Anaheim, CO. For more information or to register, please click here: https://www.sae.org/learn/content/c1729/.
SAE International has scheduled my next Photography for Accident Reconstruction, Product Liability, and Testing class (SAE C1729) for September 17-19, 2024 at Anaheim Hills Business Center, 5140 La Palma Avenue, Anaheim, California 92807.
We’ll include such topics as: how to consistently expose image; what gear really works; using flash, polarizers, and a tripod—the three most important tools; the importance of proper perspective; and night photography.
We’ll see many before-and after images demonstrating what to do and what not to do. We’ll also spend time practicing with tripods, polarizers, and single and multiple flashes, so you’ll be comfortable applying them right away.
Here are some examples of what we’ll discuss:
•Using manual exposure and creating accurate night photos. (Click on image to enlarge, then click on arrow to return to this post):
• Using a tripod, using follow focus, and setting proper exposure to capture moving vehicles during inspections or testing (Click on image to enlarge, then click on arrow to return to thispost):
• Using a tripod (for composition, leveling, and stability), a polarizer (to control glare), and a fill flash (to bring out details in the shadows) like in these before and after images (Click on image to enlarge, then click on arrow to return to thispost):
Please call or e-mail me if you have any questions or would like more details.
(Note: This post incorporates several important fundamentals along with the discussion of controlling sun stars. As always, it’s all summarized in the Takeaways at the end.)
A previous post illustrated how the number of aperture blades affected the number of rays produced in a sun star. As discussed, sun stars are created from bright spots of light in an image when the lens aperture is stopped down. While prominent sun stars might be desirable for landscape or creative photographs, they are usually unwanted in forensic photos. In fact, there have been instances where photographs with distinctive sun stars have been limited or disallowed. Here’s how to control—or even eliminate—their prominence.
There were three small, distinct bright light sources in the following night scene. A series of images was made at every whole aperture from f/16 through f/2. (As a reminder, there are six stops up from f/16: f/11, f/8, f/5.6, f/4, f/2.8, f/2.) Only four of the seven total images—each two stops apart—will be shown below. The other three intermittent images fit in the progression as you’d expect from what you’ll see below.
This first image was made with the aperture stopped down to f/16. As expected, the sun star rays were most distinct at this aperture. [Click on image to enlarge, then click on back arrow to return to this post.]
Opening up two stops to f/8 noticeably reduced the sun star effect. [Click on image to enlarge, then click on back arrow to return to this post.]
Opening up two more stops to f/4 almost completely eliminated the sun star effect. This should be acceptable for any foreseeable use. [Click on image to enlarge, then click on back arrow to return to this post.]
Finally, opening up yet two more stops to f/2 eliminated any trace of sun star rays. [Click on image to enlarge, then click on back arrow to return to this post.]
As you can see, the wider open the aperture (which means the lower the f-number), the less pronounced are the sun stars. But you can’t just adjust your aperture to either intensify or to eliminate sun stars. Whether it is daytime or nighttime photography, changing your aperture affects your image in two main ways: exposure and depth of field (DOF).
Recall that the smaller the f-number, the larger the lens opening. Just like 1/2 of a pie is twice as large as a 1/4 of a pie, a lens aperture of f/2 is twice the diameter of f/4. Here’s how changing aperture changes exposure and DOF:
Exposure: Opening the lens aperture lets in more light, which brightens the exposure. To keep the overall exposure the same, you must compensate by the same number of stops by using a faster shutter speed, lowering your ISO, or using a combination of both. Since all the above images were already at my Nikon Z 8’s lowest ISO of 64, my only option was to select a correspondingly faster shutter speed every time I opened up the aperture.
This means that for this series of four images, every time I opened up the lens aperture by two stops, I had to use a shutter speed that was two stops faster. As you can see from the captions under the images, at a constant ISO 64, the f/16 image required a 2.5 second exposure. Opening the aperture two stops to f/8 required a shutter speed of 0.6 seconds, which is two stops faster. Likewise, f/4 required 1/6 second and f/2 needed 1/25 second to keep the same overall exposure. Each were two stop increments of aperture and shutter speed.
As a side note, since the camera remained on a tripod throughout all the photographs, the shutter speed had no effect on the sharpness of the images. But changing shutter speeds will definitely affect the appearance of any moving elements in the image frame.
Depth of Field (DOF): DOF is how much of the scene—from near to far—is in acceptable focus for a given focus point. DOF is controlled by aperture. The more open the aperture, the less DOF. Conversely, stopping down the lens aperture increases DOF.
A deeper DOF is more critical in daytime photographs where almost everything is visible and, in most forensic photography, should be acceptably sharp. At night, a more shallow DOF can be perfectly acceptable, especially if the background and foreground are mostly black, as in the photos above.
As you can see on the enlargements by clicking on the photos above, f/4 would likely produce acceptable DOF. Depending on your case, even f/2 (or an aperture between f/2 and f/4) might give you all the DOF you need. As the photographer, you need to (and you get to!) decide on the tradeoff between DOF and sun star prominence.
Takeaways:
-1- You can control the prominence of sun stars from small, bright light sources (day or night) by your choice of aperture. The more stopped down your aperture, the longer and more prominent the rays. Opening up the aperture will shrink the rays until they essentially disappear at the most open apertures.
-2- Opening up or stopping down your aperture will also affect the DOF in your image. You must decide how much DOF you will need. That amount would likely be different for daylight versus night photos—even of the exact same scene.
-3- Just like with any other photography, opening up or stopping down the aperture will require that you correspondingly adjust your shutter speed, ISO, or a combination of both, to maintain the same overall exposure. Make sure your shutter speed is sufficient for your image, especially if there are moving objects in your frame. Also, setting your ISO as low as possible minimizes noise and maximizes dynamic range, both of which are even more important in night photography.
It’s been a few years since my SAE automotive forensic photography class has been offered in the Southeast—or even in the East, for that matter! Now it will be offered May 14-16, 2024 in Orlando, FL.
Anyone working in accident reconstruction, product liability cases, vehicle testing, or other forensic, evaluation, or testing investigations knows the importance of creating consistent, quality, and useful photographs. You’ll be glad to know that you can (probably) do that with the camera you already have! Just think of how much money you’ve already saved! You just need to understand and use that camera and just a few essentials such as a tripod, flash(es), and a polarizer.
In the classroom, we will learn the fundamentals of making good, consistent photographs with lots and lots of good and bad examples. We will do hands-on sessions—both indoors and out—with tripods, polarizers, night scenes, and the big one—using one or more flashes. While it will be most useful to bring your own camera gear—including flash(es) and tripod—I will bring various tripods, tripod heads, flashes, polarizers, and neutral density (ND) filters for you to evaluate during the hands-on sessions. Those will help you determine if your gear is what will serve you best, or if you need to upgrade a piece or two.
Many lenses have an odd number of aperture blades, but several have an even number. For most photography, there is little to no noticeable effect.
There is, however, a noticeable difference if you have a “sun star” in your image. A “sun star” is the name given to noticeable rays—day or night—emanating from the sun or from an artificial light source. A sun star is created when the lens is stopped down. The more the lens is stopped down, the larger the rays of the sun star.
An even number of aperture blades results in the same number of sun star rays. As the image below shows, a lens with ten blades (the TTArtisan 50 mm f/2 lens), stopped down to f/16, resulted in ten pronounced rays from a street light at night. [Click on image to enlarge, then click back arrow to return to this post.]
An odd number of blades results in twice the number of rays. Using the same camera as above, but switching to a lens with nine aperture blades (the Nikkor Z 50 mm f/1.2 S lens), also stopped down to f/16, resulted in eighteen sun star rays. [Click on image to enlarge, then click back arrow to return to this post.]
Takeaways:
-1- Day or night, “sun stars” are often created from small, bright light sources in a photograph when lenses are stopped down.
-2- An even number of lens aperture blades creates the same number of sun star rays. An odd number of blades results in double the number of rays.
-3- An even number of blades creates more pronounced rays than does an odd number of blades.
-4- Sun stars are usually undesirable in forensic photographs. A future post will describe how to control the prominence of those rays. But if you must stop down for depth of field, an odd number of lens aperture blades will create more rays, but they will be less obtrusive.
The closer you get to your subject, the less depth of field (DOF) you have. As you can imagine, when you photograph close-up or macro or micro subjects, you get progressively even less DOF.
In close-up—or closer—shots, even stopping down to your smallest aperture won’t give you enough DOF to make much of a difference. Besides, if you fully stop down your aperture, any small gain in DOF will likely be negated by diffraction, which softens the entire image.
Focus stacking blends multiple images with increasingly further focus points into a single image. This allows you to create an image with the specific DOF you want for your subject . You might not need everything in the foreground or background sharp, but you control what is or isn’t in focus by how many images (called slices) you use.
For this example, I wanted the entire broken lug stud in focus, but wasn’t concerned about the hub surrounding it. As shown below, even stopping down to f/16 didn’t give sufficient DOF to show the entire fracture surface. [Click on image to enlarge, then click on back arrow to return to this post.]
Notice how the focus quickly falls off toward the farther end of the broken lug stud fracture surface. Both the foreground and background of the hub are out of focus, but that’s okay since they’re not the subject of the photograph.
To get the entire lug stud to be in focus, I made nine separate photographs of the fracture surface with each one focused slightly further from the camera. [Click on image to enlarge, then click on back arrow to return to this post.]
In Photoshop, I brought all of the raw frames (slices) into a single image as separate layers. I aligned the layers, then stacked them using Auto-Blend Layers. As shown below, using layer masks, this function blocked the out of focus areas on each slice. Only the sharpest parts of each layer, or slice, remained. [Click on image to enlarge, then click on back arrow to return to this post.]
I cropped the image back to its original size and saved it with all its layers as a PSB Photoshop Big) file. With ten 45 megapixel layers, the file was over 2 GB, which is larger than can be saved as a PSD (Photoshop Document) file. I then flattened the image, resized it, output sharpened it, and saved it as JPEG. Note: I still always keep the PSB file with the layers and layer masks to be able to show what I did, if asked.
Below is the result of the focus stack blending of the nine layers shown above. [Click on image to enlarge, then click on back arrow to return to this post.]
Note how the entire face of the fracture surface is now in focus. Note: I used to also use Zerene Stacker and Helicon Focus for focus stacking—and both are excellent—but now I almost exclusively use Photoshop.
Takeaways:
-1- The closer your camera is to your subject, the less depth of field (DOF) you will have.
-2- Most forensic images require the entire subject to be in focus to show all its details.
-3- Even stopping your lens down to its minimum aperture won’t give you sufficient DOF, plus you risk losing detail from diffraction.
-4- Focus stacking requires a series of photographs (slices) be made with the focus increasingly distant from the camera. These slices are blended into a single image where only the sharpest elements of each slice will be kept by the software.
-5- Only combining images through focus stacking allows you to get sufficient DOF for many close-up, macro, and micro images.
-6- The closer the subject, the more slices (individual images) you need. For some micro images, more than 1,000 slices need to be blended through focus stacking.
-7- Focus stacking can also be used for large subjects including landscapes, buildings, accident scenes, and vehicles. Those larger subjects require fewer slices—often only two or three.
One kind of forensic night photography requires you to accurately capture the appearance of a scene as closely as possible under lighting conditions similar to what they were at the time of an incident. Of course that results in an overall image that appears dark since, after all, it is a night scene.
Using fully automatic exposure modes will result in the scene being significantly (and obviously) overexposed. This is because the camera is trying to record the scene as a mid-tone (frequently referred to as “middle gray” even when the subject isn’t gray). This automatic brightening of night scenes usually results in noisy, overexposed images that don’t resemble the actual scene at all.
Almost all consumer and prosumer cameras have a fully automatic exposure mode denoted by a green camera icon with or without the word “Auto”. The image below shows the full Auto mode icon on a Nikon D5600 and Canon T7i. (Professional cameras like my Nikon Z 8’s often do not have this mode.) [Click on the image to enlarge. Then click on back arrow to return to this post.]
In Auto mode, the camera sets the aperture, shutter speed, and ISO, and you cannot change or override any of them! Because the photographer cannot affect exposure in any way in full Auto mode, when teaching I refer to it as the “Green Mode of Shame” to drive home the point that you as the photographer are left without any ability to control your exposure (or a number of other important settings). While this mode might work for ideal lighting during the day, it just doesn’t—and can’t—work for ambient light night photographs. (Note: Semi-automatic exposure modes Program, Aperture Priority, and Shutter Priority will be addressed in a future post.)
I made the following two images in a lighted parking lot that had a white, a black, and a silver vehicle in the scene. (Note: both images were captured in the camera’s raw NEF format.)
For this first image, I used a Nikon Z 5 in Auto mode (its Green Mode of Shame). As discussed above, the camera tried to create a mid-tone image, and I couldn’t do anything about it. [Click on the image to enlarge. Then click on back arrow to return to this post.]
Note the camera chose a wide open aperture to let in as much light as possible (f4 on that lens), and an ISO of 25,600(!), while setting the shutter speed to 1/50 of a second. (A shutter speed of 1/50 of a second is considered handholdable with a near 50 mm focal length. The thinking is that if someone is going to use a camera in Auto mode, the camera will most likely be handheld. Consequently, the camera will open the aperture and boost the ISO to keep the shutter speed handholdable. But as usual, I had this camera on a tripod, like I almost always do in any light. )
Even though the original image is quite noisy (the great reduction in size and the JPEG compression of this posted image reduced the appearance of noise from the original raw), that’s not the biggest issue with it. The real problem is the scene was nowhere near this bright; it didn’t look anything like this at the time I made this image.
For the image below, I switched to manual exposure mode (the only exposure mode I ever use). I kept the aperture at f/4, but then set the ISO to the camera’s minimum of 100 to minimize the image noise. Because the camera was on a tripod, I wasn’t too concerned about shutter speed as long as it stayed within reason. [Click on the image to enlarge. Then click on back arrow to return to this post.]
With the aperture and ISO set, I adjusted the shutter speed until the image on the back of the LCD looked like what I was seeing with my naked eye. As it turns out, the Auto image was four stops lighter than this more accurate one.
Note 1: By default, I have the camera’s Picture Control set to Neutral with reduced contrast and saturation so the LCD closely matches my computer monitor.
Note 2: For an actual night photograph case, I start by tethering my camera to a laptop that is calibrated to match my desktop monitor. There’s much more to the actual process than I did for this demo, but it’s close enough to illustrate the point that you need to take manual control of the camera.
While this second image is close to showing the scene as I saw it, to view it properly, you would need to view it with a black surround in a darkened room with your monitor brightness set to 140 cd/m² to match what I see. Regardless of these technicalities, comparing the two images—in whatever light you’re in or computer you’re on—it is obvious that the upper Auto exposure image doesn’t look anything like the more accurate lower manual exposure mode image.
In a number of cases where I’ve done both the night photography and explained why photographs submitted by other experts or photographers were improper and misleading, all of those inaccurate photographs have been stricken and disallowed by the judge.
While it’s a little bit off-topic, being able to explain how and why photographs were made and why they accurately represent what they purport to show—and why other ones don’t—is critical in almost all ambient light night photography cases.
Takeaways:
-1- Fully automatic exposure modes (like Auto) are not designed to—and cannot—accurately capture ambient light night images.
-2- You need to shoot night photographs using manual exposure mode with a low ISO to minimize noise, with the appropriate aperture for the depth of field you need, and with the shutter speed set to match what the scene looks like to the naked eye. There’s much more to the whole process, but that’s the essence of it.
-3- While the lower photo looks much closer to what the parking lot looked like when I made the photographs, it was not made with the procedure I use for case work. It is close enough to make a quick demo comparison against a demonstrably incorrect Auto method that yielded a demonstrably incorrect image.
This tire was photographed in the afternoon on a sunny day. [Click on the image to enlarge. Then click on back arrow to return to this post.]
Despite being properly exposed, there are almost no details in the shadows of the tire sidewall or the wheel. Brightening the exposure would have shifted the brightest parts of both the wheel and tire into blown out highlights and all detail there would have been permanently lost. While not essential to the tire or wheel, the brighter spots on the concrete driveway would also have blown out. This would result in a less professional looking image.
Fortunately, the overall exposure itself can remain, and flashes can be used to bring out details in the shadows. [Click on the image to enlarge. Then click on back arrow to return to this post.]
While keeping the identical exposure, a Godox TT685N II speedlight was slid into the camera’s hot shoe and aimed towards the shadows inside the wheel and on the left side of the tire sidewall. A second Godox flash—an AD200 Pro—was handheld at the lower right, and angled upwards toward the right side where the tread used to be.
These two flashes balanced the natural light and added much-needed detail in the shadows. The result was both a professional appearing image and one where details were not blocked up in dark shadows or blown out in the highlights.
Of course, like almost every photograph I make, both of these images were made with the camera on a tripod. I used a five-second self-timer so I could move over and get the handheld flash at the lower right into position.
Takeaways:
-1- On bright sunny days, there is often too much contrast to capture detail in both the highlights and the shadows.
-2- Increasing the exposure will lighten the shadows, but will cause the highlights to blow out and permanently lose all data and detail there.
-3- Adding one or more flashes to fill in shadows where needed results in more detail in the shadows without losing detail in the highlights.
-4- You may have to make a couple different images with the flashes to get the proper amount of light and the proper angle of light for what you want. When I make more than one image, I only keep the one that shows the details I intended. If you feel you must keep all the images you make, no problem. Only use the best one in reports or as an exhibit.
-5- More good news! The more often you practice with one or more flashes, the more quickly and intuitively you will be able to get both the amount and direction of light that you want.
SAE International has scheduled my next Photography for Accident Reconstruction, Product Liability, and Testing (C1729) class at their excellent Troy, MI facility from April 4-6, 2023: https://www.sae.org/learn/content/c1729/
It’s a great facility and is quite easy to access on W Big Beaver Rd just off I-75. It’s about 45 minutes from the Detroit airport. There are plenty of hotels and a lot of great restaurants in every price range.
The link above provides a detailed course outline. We’ll also get hands-on time to practice with exposure, flash, polarizers, tripod use, and more.
If you have any questions or would like more details, please feel free to email or call.
I needed to document the bolt holes on a wheel that came off the front of a pickup to show whether or not the wheel had been loose on its studs.
After making overall photos of the wheel and tire assembly, I made close-ups of the mounting surface and bolt holes from the back of the wheel. But on the outside of the wheel, the bolt holes were too deeply recessed to use a standard macro lens.
It was important to photograph the lug nut mating surface at the bottom of each recess, but it was nearly impossible both to get light down each recess and to fill the image frame with each hole. I wanted to get sharp, detailed, full frame images of the mating surface—not images cropped from a larger view.
The solution was the unique Laowa Probe lens. (I have previously discussed another unique Laowa super macro lens. I’ve found Laowa lenses to be well made and optically excellent.)
As the photo below shows, the Probe is a 16-inch long tube with a small diameter 24 mm lens surrounded by tiny LED lights at its end. You use a small USB power brick to power those LED lights. Laowa supplies a USB cable with a built-in dimmer switch, but you must supply the power brick. [Click on photo to enlarge, then click on back arrow to return to this post.]
Laowa offers the Probe with several different mounts for many popular DSLR and mirrorless cameras. I used the Nikon F-mount version of the Probe lens on my Nikon D850. Note that all versions of the Probe require manual focusing and exposure; there are no electronic connections between the Probe and any camera.
Fortunately, the lens barrel fit perfectly into the recessed bolt hole, allowing me to get a full frame image of the mounting surface at the bottom. All I had to do was to adjust the intensity of the LEDs, adjust the exposure, and click the shutter. [Click on photo to enlarge, then click on back arrow to return to this post.]
To steady the lens, manually focus, and keep the lens perpendicular to the bottom of the recess, I had the camera mounted on my rolling studio camera stand, which acted like an easily-adjusted tripod on wheels.
As you’ll see, the next two images made with the Probe lens required 0.5 and 0.3 second exposure times, respectively. That range of shutter speeds required that the camera be secured on a tripod to eliminate camera shake. Raising ISO to get handholdable shutter speeds would introduce noise, reduce detail, and reduce dynamic range. That would defeat the whole purpose of using the Probe to get sharp, detailed full frame images.
The first image I made for each paired hole (the wheel was drilled for two bolt patterns) was to show the bolt hole pair, while concentrating on the appropriate bolt hole. [Click on photo to enlarge, then click on back arrow to return to this post.]
I then slid the end of the Probe deeper into the recess to fill the frame with details of the mounting surface. [Click on photo to enlarge, then click on back arrow to return to this post.]
I know of no other way to have attained this image without significant cropping and the inherent loss of detail and resolution.
Although it’s not a lens I use all that often, I’ve found the Probe unmatched for photographing inaccessible labels, fasteners, or other components, too. The built-in LED lights around the lens make it a really useful tool.
-1- The Laowa Probe (along with the more recent Peri-Probe) lens is a unique, specialized macro lens that can allow you to photograph areas that are otherwise inaccessible.
-2- The Laowa Probe lens allows you to capture all the resolution and detail of full frame images that would be lost with a significant crop.
-3- If you are stymied about how to photograph a challenging subject, you might be able to find a commercially available specialized solution.
-4- While it is preferable to have specialized lenses at your disposal, you can always rent lenses (or other photography gear) for infrequently encountered situations. Of course, you might find yourself using even seemingly specialized lenses more often if you own them and have them readily available.